找项目
找工程师
大学仕会员
联盟中心
机器人
FA零部件
工控类
大学仕自动化小程序
快速找自动化资源、人才
自动化外包小程序
快速找外包需求、找工程师
大学仕抖音号
随时掌握一手咨询
FA零部件测评
你的零部件选购指南
自动化服务商专用
项目资源一手掌握
自动化设备需求方专用
设备案例设备供应商了如指掌
大学仕微信公众号
随时掌握一手咨询
大学仕自动化小程序
快速找自动化资源、人才
自动化外包小程序
快速找外包需求、找工程师
大学仕抖音号
随时掌握一手咨询
零部件测评
微信扫码 进入小程序
自动化外包
微信扫码 进入小程序
客服协助
加客服免费发需求
联系客服咨询项目
客服电话1
13016879065
客服电话2
400-828-5522
电话咨询客服
投诉电话
18168813292
投诉热线
自动化零部件供应商入驻申请
*公司名称
主营业务
*姓名
*手机号码
电子邮箱
提交申请
激活店铺

只需2步,轻松拥有您的专属企业店铺

店铺信息

完善店铺信息,让雇主更加了解你

去完成
企业认证

完成实名认证,让雇主更加信任你

去完成
邀请你加入大学仕联盟
大学仕自动化小程序
长按识别进入小程序
资讯中心
当前位置:
视觉检测:锂电池检测的新型视觉工具
大学仕 2020-06-05 11:58
点赞 776浏览

当今社会,随着计算机技术,人工智能等科学技术的出现和发展,以及研究的深入,出现了基于机器视觉技术的表面缺陷检测技术。这种技术的出现,大大提高了生产作业的效率,避免了因作业条件,主观判断等影响检测结果的准确性,实现能更好更精确地进行表面缺陷检测,更加快速的识别产品表面瑕疵缺陷。

GLCM共有14种纹理特征,对比度、相关性、能量(和同质性是不相关的,所以,为减少计算量,提高特征分类精度,常取这4个特征作为GLCM特征。GLCM在图像的纹理分析中占有重要的地位,在特征提取和缺陷检测等方面有着广泛的应用。


结构法。结构法是建立在纹理基元理论基础上的,认为复杂的纹理是由一些在空间中重复出现的最小模式即纹理基元执照一定的规律排列组成。结构方法主要有两个重要问题:一是纹理基元的确定;二是纹理基元排列规律的提取。最简单的纹理基元是单个的像素,也可以是图像的灰度均质区域,此外,Vilnrotter等人[99]采用边缘重复数组来提取基元,Hsu等人[100]利用自相关函数和小波变换系数提取基元,等等。确定基元后需要提取基元的特征参数和纹理结构参数作为描述图像纹理的特征。基元的特征参数有面积、周长、离心率、矩量等,结构参数则由基元之间的排列规律确定;基元的排列规则是基元的中心坐标及基元之间的空间拓扑关系,可从基元之间的模型几何中得到,也可以通过基元之间的相位、距离等统计特征中得到,较复杂的情况可以用句法分析、数学形态学等方法。

USB、串口、并口是计算机和外设进行通讯的常用接口,但对于数据量大的图像来说,串行RS-232协议难于达到图像采集实时性要求。USB口即使能满足所需速度,但要求外设必须支持USB协议,而USB协议与常用工程软件的接口还不普及。IEEE-1394接口具有廉价,速度快,支持热拔插,数据传输速率可扩展,标准开放等特点,在众多领域得到了广泛的应用。但随着数字图像采集速度的提高、数据量的增大,原有的标准渐难以满足需求。为了简化数据的连接,实现高速、高精度、灵活、简单的连接,在National Semiconductor公司等多家相机制造商共同制定推出了Camera Link标准。Camera Link是专门为数字摄像机的数据传输提出的接口标准,专为数字相机制定的一种图像数据、视频数据控制信号及相机控制信号传输的总线接口,其最主要特点是采用了低压差分信号(LVDS)技术,使摄像机的数据传输速率大大提高。

而相比传统的定位方式,工业视觉软件用于自动化生产中的定位精度更高,定位结果更稳定、更可靠、更智能化,可以为为工业生产带来产品质量的提升以及带来产量的增加;


并且,工业视觉软件的定位速度相比起传统的定位方式来说,速度上也有了较大的提升。速度提升了,在降低厂家生产成本的同时,也能全方位满足厂家24小时不停机生产的需求。可以这样说,工业视觉软件不仅推动了工业视觉技术和工业生产的快速发展,同时也让工业生产企业真正的从中受益。以此同时,工业生产的快速发展也能够进一步的刺激了工业视觉产品的销售,这使工业视觉行业,得到长期的持续增长,形成完善的产业链,推动工业4.0的火速发展。



自动化激光打标机适用于机电零部件标识,适应零件的加工后的光滑平面的蚀刻,自动化激光打标机采用独特的机构设计,光具座X/Z轴可自动左右移动,提高工作效率。实现平面批量打标,也适应零件的未加工面(粗糙面)的蚀刻。

目前出现了一些改进的LBP算法。Tan等人[76]提出了局部三值模式(LTP),即通过设定阈值将邻域与中心相似的状态作为中间状态,从而将扩展局部邻域关系为三种状态。在此基础上,Nanni等人[77]将局部关系扩展到四种状态。也有学者将LBP由传统的2维特征改进到3维特征主要用于视频分析[78-80]。此外,有学者将LBP表达的局部信息与其他信息或算法结合构成联合特征量,如Tan等人[81]联合LBP特征和Gabor小波特征进行人脸的识别,Huang等人[82]将LBP和SIFT算法结合用于人脸的3维识别。贺永刚[83]提出了一种多结构的局部二值模式,该算法结合各向同性采样和各向异性采样对局部二值模式进行扩展,利用图像金字塔提取纹理图像的微结构和宏结构信息。


在钢板表面缺陷检测领域,美国Westinghouse公司采用线阵CCD摄像机和高强度的线光源检测钢板表面缺陷,并提出了将明域、暗域及微光域3种照明光路形式组合应用于检测系统的思路。这些系统可识别的缺陷种类相对较少,并且不具备对周期性缺陷的识别能力。美国Cognex公司研制成功了iS-2000自动检测系统和iLearn自学习分类器软件系统。这两套系统配合有效改善了传统自学习分类方法在算法执行速度、数据实时吞吐量、样本训练集规模及模式特征自动选择等方面的不足;Parsytec公司为韩国浦项制铁公司研制了冷轧钢板表面缺陷检测系统HTS,该系统能对高速运动的热轧钢板表面缺陷进行在线自动检测和分级的系统,在连轧机和CSP生产线上取得了良好的效果[23];英国European Electronic System公司研制的EES系统也成功地应用于热连轧环境下的钢板质量自动检测[24]。EES系统实时地提供高清晰度、高可靠性的钢板上下表面的缺陷图像,最终交由操作员进行缺陷类型的分类判别。国内北京科技大学的高效轧制国家工程研究中心也在进行钢板表面质量检测系统的研制,对其常见缺陷类型进行了检测与识别,取得了一定的研究成果,东北大学、上海宝钢集团公司、武汉科技大学等科研院所研究了冷轧钢板表面缺陷的检测系统,重庆大学对高温连铸坯表面缺陷进行了研究。


它们其中之一都不是任何其他两个的子集。计算机视觉是计算机科学的一个分支,而机器视觉是系统工程一个特殊领域。机器视觉没有说明要使用计算机,但是在获取高速处理速度上经常会使用特殊的图像处理硬件,这个速度是普通计算机所不能达到的。机器视觉检测系统采用CCD照相机将被检测的目标转换成图像信号,传送给专用的图像处理系统,根据像素分布和亮度、颜色等信息,转变成数字化信号,图像处理系统对这些信号进行各种运算来抽取目标的特征,如面积、数量、位置、长度,再根据预设的允许度和其他条件输出结果,进行判定,实现自动识别功能。
(文章来源于贤集网)

推荐店铺
换一批
相关推荐
换一批
成功案例 热门商机 自动化技术 优质自动化公司