通过控制外部磁场,可以对磁驱动的软机器人(或软结构)实现无接触的驱动控制。磁驱动的软机器人有着很高的研究和实用价值,例如在医学领域的体内药物运送机器人,以及研发智能可穿戴领域等。
近年磁驱动软机器人得到很多知名高校和国际著名期刊的青睐。当下的磁驱动软机器人内部的磁场分布都是按照预先设定好的模式设计制造,一旦完成,其内部磁场的分布就确定了,因此难以实现对于单个机器人磁场分布的可重复性“编程” 。
近日,国际顶级期刊,science子刊《科学进展(scienceadvance)》刊登了一篇关于如何实现可重复编程的磁驱动软机器人/结构的文章,题目为“可重复编程的变形磁性软机器“,提出了一种对磁性软机器人内部磁场重塑的方法:通过将嵌在软结构中的永磁铁微粒进行加热,当温度超过“居里点”后,在材料冷却过程中施加一个外部强磁场就可以改变材料内部磁场分布。
该研究项目由来自德国的“马克斯普朗克智能系统研究所”,美国卡耐基梅隆大学机械工程学院,土耳其的科克大学以及瑞士的苏黎世联邦理工共同完成。论文中指出,这种方式的编程的磁场分辨率可以达到38微米,编程产出速率最快可达每分钟10个样本。
近年来软体机器人领域兴起,出现了基于各种不同的物理化学原理驱动的软机器人。其中有一类借助于外界磁场驱动的软机器人,即磁驱动的软机器人/软结构。这类机器人驱动原理相对简单,将具有磁性的颗粒物融合到弹性聚合物中(例如硅胶),使颗粒物的磁场按照一定的规律分布,就得到了一个磁驱动的软机器人,这个过程需要对颗粒物磁场分布进行“编程”,从而满足特定的场景需求。
当对磁驱动软机器人施加一个外部磁场时,通过控制磁场的强弱和方向,就可以控制软机器人按照预先“编程”好的方式变形,从而完成任务。磁驱动软机器人的最大特点就是,它实现了一种无接触式的软体机器人驱动,只要有合适的外加磁场就可以实现对于这类机器人的驱动和控制,并且无需担心障碍物的阻隔。
为了实现磁驱动软机器人内部磁场的编程,现有的方式基本依靠模板化的磁化方式生产制造。也有一些研究采用3d打印的方式来实现磁场分布的编排。然而,在这些研究中,有一个共同的限制就是磁场分布和机器人的加工过程是捆绑在一起的,对于每一个做好的软机器人而言,它内部的磁场分布就确定了。同时,以上的加工方式加工较慢,限制了大批量生产,从而一定程度上限制了磁驱动软机器人的实用性。